OCT and POT

Nicolas Foin, MSc, PhD; M. Ghione, MD; Alessio Matessini, MD; Justin Davies, MD, PhD; Carlo Di Mario, MD, PhD

National Heart Centre Singapore
\& Imperial College London

National Heart Centre Singapore
SingHealth

Stent sizing in bifurcation

Anatomy of Bifurcations : Murray's law

EuroIntervention

Consensus from the $5^{\text {th }}$ European Bifurc
David Hildick-Smith ${ }^{1 *}$, MD; Jens Flensted Lassen ${ }^{2}$, MD; Remo Albí Olivier Darremont ${ }^{5}$, MD; Manuel Pan ${ }^{6}$, MD; Miroslaw Ferenc ${ }^{7}$, MD; Yves Louvard ${ }^{6}$, MD

- In single stent techniques, the primary stent should be sized according to the distal main vessel diameter.
- Postdilatation, or kissing balloon inflations, are required to optimise the proximal main vessel stent diameter.

POT to complete stent expansion and reduce risk of complications

POT: what for ?

Proximal Optimisation Technique (POT), introduced by Dr. Darremont to facilitate SB access, is performed with a balloon matching the proximal stent segment.

POT technique to facilitate SB recrossing

IMPACT OF PROXIMAL OPTIMISATION ON SIDE BRANCH ACCESS

Deployment		
after POT	Deployment	after POT
Deployment		
$\sum 2 \sum_{2} \leq 2=2$		
after POT	Xience 3.0 mm	after POT (3.5
	after deployment at NP (9 ATM)	mm proximal)

OCT: Automated lumen analysis for stent sizing

DES Model designs

	$\text { \}\} }\}<\}\}$	35	$\begin{aligned} & 25555 \\ & 2555 \\ & 525 \end{aligned}$	sssss		
	Element	Xience	Taxus	Integrity	BioMatrix	Orsiro
2.25	Very Small (2 connectors)	Medium vessel workhorse (6 crowns, 3 connectors)	Small vessel workhorse (6 crowns, 2 connectors)	Small vessel workhorse (7crowns, 2 connectors*) *1.5 in Endeavor Resolute	Medium vessel workhorse (6 crowns, 2 connectors)	Small vessel workhorse (6 crowns, 3 connectors)
2.50	Small vessel workhorse (8 crowns, 2 connectors)					
2.75			Medium vessel workhorse (9			
3.00	Medium vessel workhorse (8 crowns, 2		connectors)	Medium/Large vessel workhorse (10 crowns, 2		
3.50	connectors)	Large vessel (9 crowns, 3 connectors)		connectors)	Large vessel (9 crowns, 3 connectors)	Mid-Large vessel (6 crowns, 3 connectors)
4.00	Large vessel (10 crowns, 2 connectors)		Large vessel (9 crowns, 3 connectors)			

$>$ Labeled expansion for DES generally limited to 0.5-0.75 mm above largest nominal diameter
> Unknown performances/limitations with severe overexpansion above labelled use: impaired scaffolding, drug delivery, metal fatigue, etc..
> In presence of a large diameter mismatch/long stent > check stent model designs

Further Proximal Optimization

Post-dilatation with 4.0 mm at 10 atm

Do Biodegradable ABSORB Stents Offer the Same Acute Results of Second Generation Metallic Stents in Complex Lesions? Insight from $\mathbf{1 0 0}$ Matched OCT Studies

```
Alessio Mattesini 1,3, Gioel G Secco 1,4,5, Gianni Dall'Ara1, Matteo Ghione }\mp@subsup{}{}{1}\mathrm{ ,
    Juan C Rama-Merchan }\mp@subsup{}{}{1}\mathrm{ , Alessandro Lupi4, Nicola Viceconte }\mp@subsup{}{}{1}\mathrm{ ,
    Alistair C Lindsay }\mp@subsup{}{}{1}\mathrm{ , Ranil De Silva}\mp@subsup{}{}{1}, Nicolas Foin 1, Toru Naganuma2,
        Serafina Valente3, Antonio Colombo2, Carlo Di Mario }\mp@subsup{}{}{1
```


Population:

50 lesions treated with BVS under OCT guidance at the Royal Brompton and Columbus Hospital were prospectively enrolled in the BVS-group.

50 matched lesions treated with $2^{\text {nd }}$ generation DES with a final OCT were selected from the Royal Brompton, San Salvatore and Careggi Hospital OCT databases

Lesion inclusion criteria (≥ 1 for selection):

- Lesion length > 28 mm
- Bifurcation and/or ostial involvement
- Moderate to severe calcification
- Chronic total occlusion
- In stent restenosis

OCT parameters evaluated:

- Minimal and mean lumen area
- Residual Area Stenosis
- Incomplete strut apposition
- Prolapse area
- Eccentricity and Symmetry index
- Edge dissection
- Strut fracture

Summary

1. distal reference stent sizing $=$ proximal underexpansion of the stent > POT needed to complete stent expansion
2. POT facilitate optimal mid-distal SB recrossing
3. OCT guidance is useful for stent sizing and assessment of strut apposition
4. BVS sizing in bifurcation ? Proximal or distal ref ?

