Fractional flow reserve and the influence of bifurcation angle and degree of stenosis

C. Chiastra
F. Iannaccone, J.J. Wentzel

Erasmus MC, Rotterdam, The Netherlands
Politecnico di Milano, Milano, Italy
Ghent University, Gent, Belgium
Clinical problem: FFR of bifurcations

- **FFR** is a widely accepted **measurement to assess myocardial ischemia** under high work load

- Since FFR is based on a simple model\(^1\), a **deeper comprehension of the physiological basis and diagnostic features is still needed**, in particular for **bifurcation lesions**\(^2\)

Questions:

- What is the contribution of pressure loss, because of the distal angle, to FFR?
- For which side branch stenosis is that relevant?

Aim

To investigate the influence of distal angle and side branch stenosis on the FFR by performing CFD analyses in a literature-based coronary bifurcation model.
Methods: LAD / D1 bifurcation model

- Diameters defined according to Finet’s law
- Stenosis: PMB 60% - DMB 60% - SB 60% (40% / 80%)
- Curvature: bifurcation placed on a sphere representing the heart
- Asymmetric plaque

Godino et al. J Interv Cardiol, 2010; 23: 382-393
Onuma et al. EuroIntervention, 2008; 3:546-552
Investigated geometries

SB stenosis

40%

40° Distal angle

60%

60° Distal angle

80%

80° Distal angle

40%

40° Distal angle

60%

60° Distal angle

80%

80° Distal angle
Flow used to calculate the FFR

HEALTHY

Inlet: inflow = 120 mL/min

$q = 1.43 \cdot d^{2.55} \frac{\text{m}^3}{\text{s}}$ (van der Giessen et al. 2011)

a scale factor 3 was used to simulate hyperemia
(Papafaklis et al. 2014)
Flow used to calculate the FFR

HEALTHY

Inlet: \(\text{inflow} = 120 \text{ mL/min} \)

Outlet: \(\text{Outflow Side branch} = 42 \text{ mL/min} \) (35%)
\(\text{Outflow Distal main branch} = 78 \text{ mL/min} \) (65%)

flow split \(\frac{q_{D2}}{q_{D1}} = \left(\frac{d_{D2}}{d_{D1}} \right)^2 \)

(van der Giessen et al. 2011)

Flow used to calculate the FFR

Healthy

Inlet: inflow $= 120 \text{ mL/min}$

Outlet:
- Outflow Side branch $= 42 \text{ mL/min}$ (35%)
- Outflow Distal main branch $= 78 \text{ mL/min}$ (65%)

Diseased

25%, 35%, 45%

30, 42, 54 mL/min

55%, 65%, 75%

66, 78, 90 mL/min

FFR calculation Main Branch

- FFR – main branch:
\[\frac{P_{DMB}}{P_{PMB}} = \frac{86}{100} = 0.86 \]
• FFR – main branch:
 \[\frac{P_{DMB}}{P_{PMB}} = \frac{86}{100} = 0.86 \]

• FFR – side branch:
 \[\frac{P_{SB}}{P_{PMB}} = \frac{65}{100} = 0.65 \]
Results: FFR main branch

influence of angle

Distal angle

→ no influence on FFR in main branch

(when PMB stenosis is 60%)
Results: FFR main branch influence of SB stenosis and angle

SB stenosis = 40%

SB stenosis = 60%

SB stenosis = 80%

Distal angle → no influence on FFR in main branch

SB stenosis → no influence on FFR in main branch

Q_{in} = 120 \text{ mL/min}
Results: FFR side branch influence of SB stenosis and angle

For lower SB stenosis: FFR in SB is dominated by proximal stenosis and thus insensitive to flow through side branch and distal angle

$Q_{in} = 120 \text{ mL/min}$
Results: FFR side branch influence of distal angle

SB stenosis = 80%

For higher SB stenosis:
FFR in SB is dependent on flow through side branch and distal angle
Results: Pressure drop – flow-rate relationship in the SB

SB stenosis = 80%

\[\Delta P_{SB} = 0.010 Q_{SB}^2 + 0.45 Q_{SB} \]

- 80% - 40°
- 80% - 55°
- 80% - 70°

\[\Delta P_{SB} = 0.015 Q_{SB}^2 + 0.56 Q_{SB} \]

\[\Delta P_{SB} = 0.017 Q_{SB}^2 + 0.69 Q_{SB} \]
Conclusions

• Pressure drop – flow relationship across the SB stenosis is quadratic
 → SB flow resistance is higher when the distal angle is larger in bifurcations with severe SB stenosis

• Consideration on FFR in bifurcations:

 DISTAL MAIN BRANCH: FFR is combined result of distal and proximal main branch stenosis
 → SB stenosis has minimal effect on FFR
 → distal angle has minimal influence on FFR

 SIDE BRANCH: FFR is combined result of side branch and proximal stenosis
 → large influence of distal angle on FFR when SB stenosis is severe
Acknowledgments

Erasmus MC
Jolanda J. Wentzel, PhD
Frank Gijsen, PhD
Claudio Chiastra, PhD
Francesco Iannaccone, PhD
Patrick Serruys, PhD, MD

POLIMI
Prof. Francesco Migliavacca
Prof. Gabriele Dubini
Claudio Chiastra, PhD

Ghent University
Prof. Benedict Verhegghe
Prof. Patrick Segers
Matthieu De Beule, PhD
Francesco Iannaccone, PhD
Contact: claudio.chiastra@polimi.it

Thank you for your attention