

Imaging Session: OCT and New IVUS

Predictors of Side Branch Compomise in OCT Observations

Shiro Uemura, MD, PhD

Cardiovascular Medicine Kawasaki Medical School, Japan

Longitudinal Reconstruction of OCT Images

OCT Characterization of Bifurcation Lesions

- 1) Plaque morphology Distribution Tissue character
- 2) Details of SB ostium Diameter Shape
 - Plaque burden
- 3) Carina shape
- 4) Bifurcation angle
- 5) Others

FD-OCT

superior spatial resolution (10μm) fast pullback (54mm/sec)

Pullback from LAD to LMT

Pullback from LCx to LMT

Varidation of Bifurcation Angle Measurement by OCT

Comparison with coronary CT angio.

Watanabe, Uemura, et al.Coron Artery Dis. 2016 Dec;27(8):682-689.

Planimetric Parameters of Bifurcation Lesion based on Longitudinal OCT Image

SB angle : side branch angle

CT angle : carina tip angle

BP-CT length : length between proximal branching-point (BP) to carina tip (CT)

VEBC

Plaque Distrubution at Carina Tip Level

Patient Background

Elective Cross-over Single Stent Implantation (49 patients, 52 lesions)

SB >2.0mm

Location of bifurcation	
LAD	26 (50.0%)
LCX	10 (19.2%)
RCA	14 (26.9%)
LMT	2 (3.9%)
Type of lesion (Medina classification)	
(1,1,0)	9 (17.3%)
(1,0,0)	16 (30.8%)
(0,1,0)	27 (51.9%)
Main branch	
Proximal ref. diameter, mm	3.01 ± 0.52
Distal ref. diameter, mm	2.62 ± 0.58
MLD, mm	1.00 ± 0.22
% stenosis, %	59.8 ± 9.05
Side branch	
Reference diameter, mm	2.03 ± 0.38

() EBC

Quantitative Analysis of Baseline OCT Image

SB Compromise was defined as angiographic worsening of SB ostial stenosis (>75%).

	SB compromise (n=22)	Non SB comprom (n=30)	ise p Value
Lumen area mm ²			
proximal ref.	7.30±1.87 8.25±2	.94 0.19	
distal ref.	5.27±1.84 6.41±3	.02 0.12	
minimum 1.46±0.4	9 1.50±0.65 0	.85	
proximal BP	4.23±1.49 6.04±3	.25 <0.05	
carina tip	3.07±1.27 4.37±2	.93 0.06	
Lesion length, mm	21.3±7.16 2	2.3±7.16	0.63
Plaque distribution at carina ti	ip level		
Theoretical pattern (Plaque free carina)	17 (77.3%))	5 (16.7%)	<0.01
	1		
SB angle, °	60.3±24.3 69.5±1	6.4 0.11	
CT angle, °	35.5±22.2 70.9±3	4.4 <0.001	
BP-CT length, mm	1.3±0.67	2.4土0.88	<0.001

OCT Predictors of SB Compromise

	HR	95% CI	p Value
•••••			
Lumen area			
at proximal BP	0.96	0.66-1.38	0.81
Theoretical plaque distribution			
at carina tip	8.53	1.21-59.9	<0.05
CT angle (\leq 51°)	10.5	1.17-94.4	<0.05
BP-CT length (\leq 1.75 mm)	19.2	2.27-162	<0.01

Prediction of SB Compromise based on Longitudinal OCT Parameters

	BP-CT length≦1.75mm	BP-CT length>1.75mm
CT angle≦51°	82.4% (14/17)	41.7% (5/12)
CT angle>51°	28.6% (2/7)	0% (0/16)

Serial Change of Jailed SB Ostium

Jailed Side Branch Ostium after MV Stenting 3D-OCT Imaging

Just after stent implantation

2 years after PCI

Neointimal coverage of jailed side branches in coronary bifurcation lesions: an optical coherence tomography analysis

Teruyoshi Kume, Ryotaro Yamada, Koyama Terumasa, Tomoko Tamada, Koichiro Imai, Kenzo Fukuhara, Yutaka Goryo, Ai Kawamura, Okamoto Hiroshi, Yoji Neishi and Shiro Uemura

Coron Artery Dis. 2017 doi: 10.1097/MCA.00000000000563.

Background

In addition to risk of late stent thromobosis, overhanging struts within SB ostium may be the risk of SB flow disturbance during long-term follow-up, by means of late tissue growth (neointimal proliferation or fibrin deposition) around struts.

Purpose

To characterize the relationship between the jailing strut pattern within the SB ostium and the tissue coverage of the jailed SB ostium at the chronic phase.

OCT Analysis of Side Branch Ostium

29 bifurcation lesions in patients with stable AP

Serial OCT imaging

at stent implantation 8 months (mid-term) 18 months (long-term)

Follow-up

Link group

No-link group

Kume T, Uemura S, et al. Coron Artery Dis. 2017 doi: 10.1097/MCA.000000000000563

PCI Procedural Background

	Link group	No-link group	n valuo
	(n=11)	(n=18)	p value
Stents per lesion	1.2±0.4	1.2±0.4	0.803
Stent diameter (mm)	2.7±0.4	2.7±0.3	0.908
Total stent length (mm)	30.0±12.6	29.8±12.6	0.973
Stent with post-dilatation	5 (45)	7 (39)	1.000
Maximal balloon pressure (atm)	15.9±3.7	15.3±2.6	0.624
SB balloon inflation after MV stent implantation	0 (0)	6 (33)	0.058
Kissing Balloon Technique	0 (0)	3 (17)	0.268
Values are mean ± SD or n (%). SB: side branch	Kur	Kume T, Uemura S, et al. Coron Artery Dis. 2017 doi: 10.1097/MCA.0000000000000563	

Serial Tissue Growth at SB Ostium

Baseline

18-month F/U

Kume T, Uemura S, et al. Coron Artery Dis. 2017 doi: 10.1097/MCA.000000000000563

OCT Analysis			
	Link group	No-link group	p value
	(n=11)	(n=18)	P
Baseline			
Total number (dots) of struts within SB ostium	8.9±2.5	4.6±2.4	<0.001
SB ostial area (mm²)	1.59±0.71	1.07±0.46	0.025
18-month Follow-up	30.0±12.6	29.8±12.6	0.973
SB ostial area free from neointima (mm²)	1.13±0.58	0.98±0.54	0.485
SB ostial obstruction by neointima (%)	26.8±21.9	9.5±22.1	0.049
Overhanging strut with link is a risk for neointimal	overgrowtha	at SB ostium(>1	L8 months)
Late loss of SB ostial area (mm ²)	0.46±0.35	0.09±0.24	0.002
Values are mean ± SD or n (%). SB: side branch.	Kume T, Ue do	mura S, et al. Coron Aı bi: 10.1097/MCA.0000(rtery Dis. 2017 00000000563

Impact of branching angle on neointimal coverage of drug-eluting stents implanted in bifurcation lesions

Makoto Watanabe^a, Shiro Uemura^b, Yoko Kita^a, Yu Sugawara^a, Yutaka Goryo^b, Tomoya Ueda^a, Tsunenari Soeda^a, Satoshi Okayama^a, Hiroyuki Okura^a, Teruyoshi Kume^b and Yoshihiko Saito^a

Coron Artery Dis. 2016 Dec;27(8):682-689.

Bifurcation Angle and Tissue Coverage of DES at F/U

Struts attaching to vessel wall **Uncovered struts (%) Uncovered struts (%)** P = 0.6015, r = 0.073P=0.0024, r=-0.41SO vw Neointimal thickness (mm) **Neointimal thickness (mm)** P = 0.7405, r = -0.046P = 0.0248, r = 0.31100 120 Wide BA may be an additional risk for late restenosis at SB ostium

Struts jailing SB ostium

Watanabe M, Uemura S, et al.Coron Artery Dis. 2016;27(8):682-689.

- 1. Evaluation of bifurcation lesions with longitudinal OCT enables us to predict SB compromise.
- 2. Narrower BA (CT angle) and shorter BP-CT length were the independent predictors for SB ostial compromise after cross-over single stenting.
- 3. Overhanging strut with link within SB ostium may be risk of late decrease in SB ostial area (>18 months). KBT may be useful for the prevention of late SB complication though removing jailing struts.
- 4. Wider BA was accompanied with enhanced tissue growth in overhanging struts, which might lead to flow disturbance in SB during long-term follow-up.

Thank you for your attention.

