European Bifurcation Club 2017 Oct 14, 2017

How to recognize a clinically relevant SB?

Bon-Kwon Koo, MD, PhD

Seoul National University Hospital, Seoul, Korea

Side branch assessment: How?

<u>Angiography</u>

Intravascular Ultrasound

Optical Coherence Tomography

Fractional Flow Reserve

Coronary CT angiography

Limitation of anatomical assessment

FFR vs. % diameter stenosis in Jailed side branches Anatomical severity + Functional significance

Angio-guided vs. FFR-guided approach

- Previous studies focused on angiographic findings failed to define the side branch characteristics which favor side branch stenting.
- FFR-guided side branch intervention strategy has not yet proved its superiority over angiography-guided intervention.

	FFR-guided group	Angio-guided group	Р
	N=108	N=108	
Side branch PCI	30%	45%	0.02
TVR	5 (4.6%)	4 (3.7%)	0.7
MI	0	0	1
Cardiac death	0	0	1

	Angio group (n=160)	FFR group (n=160)	p
Cardiac death, n(%)	1 (0.6)	2 (1.3)	0.56
MI, n(%)	22 (13.8)	19 (11.9)	0.74
TLR, n(%)	8 (5.0)	5 (3.1)	0.57
CABG, n(%)	0	0	
TVR, n(%)	11 (6.9)	9 (5.6)	0.82
MACE, n(%)	29 (18.1)	29 (18.1)	1.00
ST-def/prob, n(%)	2 (1.3)	1 (0.6)	0.56
5 tCt2014			-Colombia Univer Medical Center /York-Presbyteria

Koo BK, et al. Eur Heart J 2008

Chen SL, et al. JACC Cardiovasc Interv 2015

Significant stenosis?

- Anatomically
- Functionally
- Clinically
- Prognostically

Stenosis+ \rightarrow Clinically relevant ischemia+ \rightarrow Revascularization \rightarrow Better Prognosis

Prerequisites of clinical benefit with PCI

• Presence of ischemia

Presence of moderate to severe ischemia

- Selection of appropriate PCI strategy
- Adequate PCI procedure

Which side branch deserves stent implantation?

 In terms of ischemia at risk, revascularization is better than medical treatment when moderate to severe ischemia exists. Therefore, it is important to define the side branches that can cause ≥10% ischemia.

Hachamovitch, Circulation 2003

Moderate to severe ischemia?

Calculation of % ischemia from MPI

A

Stress Perfusion

Rest Perfusion

Reversibility Perfusion

Summed Rest Score

Summed Difference Score (SDS) 9

Summed score

- 5-grade scoring system (0-4) in
 20 segments of myocardium
- Represents both <u>ischemic extent and</u> <u>severity</u>

Summed difference score (SDS) = summed stress score (11) – summed rest score (2) = 9

% Ischemia = SDS 9÷ 80 × 100 = 11%

SNUH Seoul National University Hospital

% myocardial ischemia?

Assessment of clinical relevance of a side branch with MPI and CCTA

Myocardial Perfusion Imaging Arm	Coronary CT angiography Arm 412 patients from FMM registry who underwent CAG and CCTA	
77 patients with diagonal branch stenosis by ICA and underwent MPI (SPECT or PET) within 3 months		
Evaluaion (n=24)		
 Insignificant side branch lesion (10 patients) Significant LAD stenosis (7 patients) Adequate MPI image not available (7 patients) 	 Exclusion (n=101) Diffuse diagonal branch lesion (88 patients) Adequate CCTA images not available (13 patients) 	
53 patients in MPI arm	Jeon WK KCS meeting 2016	

Manuscript under preparation

<u>SNuH</u> score

Variables	Description	Score
Size (S)	Vessel diameter ≥ 2.5mm	1
Number (Nu)	Number of diagonal branches ≤ 2	1
Highest (H)	No branch below the target branch	1

Koo BK, et al., JACC Intv, 2012

Modified SNUH (mSNUH) score

Variables	Description	Score
Size	Vessel diameter ≥ 2.5mm	1
	Number of diagonal branches = 1	2
Number	Number of diagonal branches = 2	1
	Number of diagonal branches ≥ 3	0
U biety	Left dominant or Apical area reaching OM branch	-1*
Highest	No branch below the target branch in proximal to mid LAD	1

*If total score is 0, then -1 is not added (The lowest total score is 0.)

% myocardial ischemia?

SSS	SRS	SDS	%lschemia
12	0	12	15.0%

SSS	SRS	SDS	%lschemia
4	0	4	5.0%

Angiographic and flow characteristics for ≥10% ischemia

	lschemia ≥10% (n=13)	lschemia <10% (n=40)	Р
<u>S</u> ize ≥ 2.5mm	13 (100%)	25 (67.5%)	0.023
<u>N</u> umber of diagonals			0.032
2	5 (38.5%)	27 (67.5%)	
1	8 (61.5%)	9 (22.5%)	
Apical area reaching OM branch (<u>U</u> biety)	3 (23.1%)	21 (52.5%)	0.064
Highest in prox-mid LAD*	11 (84.6%)	20 (50.0%)	0.028
Flow data from PET			
Stress myocardial blood flow	1.44 ± 0.34	1.74 ± 0.32	0.033
Coronary flow reserve	1.55 ± 0.45	1.91 ± 0.49	0.068
Relative flow reserve	0.59 ± 0.07	0.68 ± 0.09	0.015

*No branch below the target branch in proximal and mid LAD segments

Assessment of clinical relevance of a side branch with MPI and CCTA

Myocardial Perfusion Imaging Arm	Coronary CT angiography Arm	
77 patients with diagonal branch stenosis by ICA and underwent MPI (SPECT or PET) within 3 months	412 patients from FMM registry who underwent CAG and CCTA	
Exclusion (n=24) Insignificant side branch lesion (10 patients) Significant LAD stenosis (7 patients) Adequate MPI image not available (7 patients) 53 patients in MPI arm	Exclusion (n=101) Diffuse diagonal branch lesion (88 patients) Adequate CCTA images not available (13 patients) 311 patients (655 vessels) in CCTA arm Jeon WK. KCS meeting 2016	

SNUH Seoul National University Hospital Cardiovascular Center

Manuscript under preparation

Calculation of myocardial mass at risk from CCTA

Fractional Myocardial Mass (FMM)

: Myocardial mass supplied a by specific vessel calculated from vessel length in CCTA

- Allometric scaling between cumulative vessel length and myocardial mass found in mammalian heart was applied to human heart.

- FMM was computed using stem and crown model based on allometric scaling system.

```
L : length, M : mass

L_0 = L_1 + L_2 + L_3 + ...

M_0 = M_1 + M_2 + M_3 + ...

M_x = k \cdot L_x^{(4/3)}
```

% FMM = FMM ÷ LV mass × 100

SNUH Seoul National University Hospital Courtesy of Jin-Ho Choi, MD, Samsung Medical Center Cardiovascular Center

FMM in major coronary artery and its branches

Kim HY, Choi JH, JACC Interv 2016

Courtesy of Jin-Ho Choi, MD, Samsung Medical Center

Myocardial mass at risk from CCTA

Angiographic characteristics for ≥10% FMM

Distribution of %FMM

	FMM ≥10% (n=83)	FMM <10% (n=572)	Ρ
Size ≥ 2.5mm	58 (69.9%)	127 (22.2%)	<0.001
Number = 2	24 (28.9%)	270 (47.2%)	~0.001
Number = 1	51 (61.4%)	22 (3.8%)	\U.UUT
Apical area reaching OM (Ubiety+)	21 (25.3%)	219 (38.3%)	0.022
Highest in prox-mid LAD (Highest+)	63 (75.9%)	248 (43.4%)	<0.001

Jeon WK. KCS meeting 2016

Discrimination/Reclassification ability for ≥10% FMM

SNUH Seoul National University Hospital Cardiovascular Center Jeon WK. KCS meeting 2016

How to assess side branches?

- Assess myocardial mass at risk before you do anything (IVUS, FFR, ballooning, stenting...) for side branches.
- Estimate the size, location and influence of other branches.
- Remind that only a few side (diagonal) branches can cause moderate to severe ischemia.

