

Vascular Biology of Stent Restenosis

European Bifurcation Club 2017 Porto, Portugal October 14th, 2017

Habib Samady MD Professor of Medicine Director, Interventional Cardiology, Emory University Director, Cardiac Catheterization Laboratory Emory University Hospital

Disclosures

- Medtronic: PI SHEAR STENT Trial
- Abbott Vascular: PI Restoration Study (Subanalysis of ABSORB III Img.)
- Gilead: PI MARINA Trial
- Volcano Therapeutics: Research Grants Steering Comm ADVISE II and Define PCI
- **St. Jude Medical:** Research Grants
- American Heart Association: Mentor Fellowship Awards
- National Institute of Health: Co-I NIH ROI/PPG
- American College of Cardiology: Deputy Editor, JACC Interventions

Restenosis: POBA to Stent

Mechanisms of POBA Restenosis

Acute Recoil Dissection Constrictive Remodeling

BMS: 20-50% ISR

Clinical Patterns of ISR:

R Mehran et al.

ISR Pattern I: Focal Type IB: Margin Type IA: Articulation or gap Type IC: Focal body Type ID: Multifocal ISR Patterns II, III, IV, Diffuse ISR Pattern II: Intra-stent ISR Pattern III: Proliferative ISR Pattern IV: Total Occlusion

Source: Habib Samady, William F. Fearon, Alan C. Yeung, Spencer B. King III: Interventional Cardiology, 2nd Edition Copyright © McGraw-Hill Education. All rights reserved.

Source: In-Stent Restenosis, Interventional Cardiology, 2e

Citation: Samady H, Fearon WF, Yeung AC, King III SB. Interventional Cardiology, 2e; 2017 Available at: http://accesscardiology.mhmedical.com/content.aspx?bookid=1986§ionid=165115695 Accessed: October 14, 2017 Copyright © 2017 McGraw-Hill Education. All rights reserved

Mechanisms and Pathology of ISR

Nakamura et al. Intervent Cardiol Clin 5 (2016) 391–403

Four Components of Arterial Injury After Stenting

Edelman et al. AJC 1998:81(7A)

Polymer Coating Suppresses Neointimal Hyperplasia

Rogers, C et al. Circulation 1995;91(12):2996 and 2999

Drug Patterns of Neointimal Suppression

Byrne et al. Heart. 2009;95:1572–1578.

Histology of Neointima: EES vs ZES

Rabbit IliacsModel

Figure 3. Representative cross-sectional images of 28-day and 60-day second-generation everolimus-eluting stents and slow-release zotarolimus-eluting stents in the atherosclerotic rabbit ilio-femoral arteries. (A, B) Low-power (2x, Movat Pentachrome stain) and high-power (20x, H&E stain) magnifications illustrating similar neointimal growth and strut coverage between the two stent groups. (C) Immunostaining for lesional macrophages by RAM11 (magnification 20x).

Yazdani, Virmani. JIC 2013

Timing of Drug Release: EES vs ZES

Rabbit Iliacs

Yazdani, Virmani. JIC 2013

Mechanisms and Pathology of ISR

Early

BMS

Late

DES

Nakamura et al. Intervent Cardiol Clin 5 (2016) 391–403

Transformation of Endothelial Cell Morphology by Fluid Shear Stress

Bovine aortic endothelial cells.

Physiologic Arterial Hemodynamic Shear Stress (>15 dynes/cm²)

Low Arterial Hemodynamic Shear Stress (0-4 dynes/cm²)

Molecular Association of low WSS with Plaque Progression

ApoE-knockout mice Partial carotid ligation model Intimal RNA in zones of low WSS developed: Upregulation of proatherogenic genes eg. VCAM-1 and ICAM-1 expression) Downregulation of antiatherogenic genes (e.g., those governing eNOS and KLF-2 expression Low WSS regions exhibited endothelial dysfunction and developed rapidly progressive atherosclerosis to advanced lesions within 4weeks

Nam D, Am. J. Physiol. Heart Circ. Physiol. 2009; 297, H1535–H1543.

High WSS and Plaque Progression Change in Plaque Composition in Low, Intermediate, and High WSS Segments Patients with Moderate/Non-Obstructive CAD

N=20 6 months f/u High Dose Statin Tx

Circulation. 2011 Aug 16;124(7):779-88.

In-Stent Neoatherosclerosis

A Final Common Pathway of Late Stent Failure

Seung-Jung Park, MD, PHD,* Soo-Jin Kang, MD, PHD,* Renu Virmani, MD,† Masataka Nakano, MD,† Yasunori Ueda, MD‡

Seoul, South Korea; Gaithersburg, Maryland; and Osaka, Japan

In-stent neoatherosclerosis is an important substrate for both ISR and LST, especially in the extended phase.

Strut Thickness and NIH

Bx Velocity stent

Driver stent

Foin et al. International Journal of Cardiology 177 (2014) 800–808

Strut Thickness Getting Thinner

Foin et al. International Journal of Cardiology 177 (2014) 800–808

Interventional Cardiovascular Medicine

Streamlines at the vicinity of rectangular (nonstreamlined) struts and circular arc (stremlined) struts for 2:1, 4:1, 8:1 length-to-height ratios. Recirculation zones occur in rectangular struts of all aspect ratios but only in thick circular-shaped struts with a 2:1 length-to-height ratio

Shear-Stent Platform Profiles

oints

- XIENCE Xpedition[®] Everolimuseluting stent (X-EES) - Abbott Vascular
 - Resolute Integrity® Zotarolimuseluting stent (R-ZES) – Medtronic Inc.

Helical wrap

Sinusoidal-formed wire

 continuous wire that is molded into a sinusoidal wave and wrapped in a helical pattern and

aser-fused

Shear Stent Status Update

ID: 281-26: 42 year-old male presented with unstable angina. History of CCS III angina w/ infero-apical ischemia in non-invasive imaging

Resolute Integrity® Zotarolimus-eluting stent (R-ZES)

Shear Stent Optical Coherence Tomographic -derived Computational Fluid Dynamics

Baseline Procedure after BA	Post-stent Deployment		1Y follow-up	
Baseline Procedure after BA		Post-Procedure		

Mechanisms and Pathology of ISR

Nakamura et al. Intervent Cardiol Clin 5 (2016) 391–403

Under-expansion and Restenosis

Dangas et al. JACC 2010; 56:1897-1907

Stent Fracture and Restenosis

Dangas et al. JACC 2010; 56:1897-1907

Mechanisms and Pathology of ISR

Nakamura et al. Intervent Cardiol Clin 5 (2016) 391–403

Mechanisms and Pathology of ISR

Vascular Injury Non-uniform drug delivery

Vessel size and length Hemodynamics/WSS

Co-morbidities Drug resistance Hypersensitivity

Under-expansion Stent Fracture Barotrauma Stent gap and overlap Geographic miss

Nakamura et al. Intervent Cardiol Clin 5 (2016) 391–403