Process or principles of patient-specific fluid dynamics simulations

Claudio Chiastra

Politecnico di Milano, Milan, Italy

XIII European Bifurcation Club meeting – Porto, Portugal – 13th & 14th October 2017

Fluid dynamics simulations: workflow

Fluid dynamics simulations: workflow

PATIENT-SPECIFIC ANALYSIS

Patient's imaging data

Angiography

- CT
- IVUS
 - OCT

Patient-specific boundary conditions

- HR
- Velocity / flow-rate (Doppler, frame count method)
- Pressure

Patient-specific modeling: our approach

Development of a semi-automatic method for the reconstruction of patient-specific stented coronary arteries from OCT images for fluid dynamics analyses

Chiastra et al. J Cardiovasc Transl Res, Under Review

Validation of the reconstruction method

3D reconstruction method

For details on the **detection algorithms** see: **Chiastra et al.** *PLoS ONE,* 2017 **Migliori et al.** *Med Eng Phys,* 2017

() EBC

OCT frames alignment / rotation

Alignment of lumen contours and stent struts along the main branch centerline

Twist angle error estimation

through the side branch centerline

Stent reconstruction

() EBC

Validation: lumen reconstruction

- Good replication of lumen cross-sections
- Twist error angle at the extremities
- Relative error for the lumen volume: 7.1%

Validation: stent reconstruction

- Good replication of stent design
- Regions of complete overlapping between stent reconstructions
- Distances between the two geometries (first 3 quartiles): 130 µm; 195 µm; 270 µm

Right coronary artery

V/

■ 3.5x28 mm Xience Prime (Abbott Vascular) + post-dilation

Angiographic views for centerline extraction

- Right coronary artery
- 3.5x28 mm Xience Prime (Abbott Vascular) + post-dilation

Chiastra et al. PLoS ONE, 2017

Geme

rsità Cattolica del Sacro Cuore

Right coronary artery

EBC

■ 3.5x28 mm Xience Prime (Abbott Vascular) + post-dilation

■ **Mesh:** 5,957,992 tetrahedral elements

Lad

Boundary conditions

Inlet: flow-rate based on frame count ¹

$$Q = \frac{15\frac{frame}{s}}{\# frames} \cdot V[ml] \cdot 60\frac{s}{min}$$

Outlet: flow-split based on scaling law ² (MB = 94%, SB = 6%)

^{1.} Sakamoto et al. *Am J Cardiol*, 2013 2. Van der Giessen et al. *J Biomech*, 2011

Results: velocity

Results: time-averaged wall shear stress

Conclusions

3D reconstruction method of stented coronary bifurcation models from OCT for fluid dynamics simulations

- Able to reconstruct continuous 3D stent geometries with high accuracy
- Able to capture malapposed struts
- Able to reconstruct every type of coronary stent (i.e. with rectangular / circular cross-section)

■ <u>Validation</u> of the reconstruction method

- Good replication of the lumen and stent
- The more the landmarks, the less the twist angle error between OCT frames

Application of the reconstruction method <u>patient-specifc cases</u>

EBC FORECAST flow-chart

Research team

- Gabriele Dubini
- Susanna Migliori

- Luca Mainardi
- Eros Montin
- Lorenzo Genuardi

Fondazione Policlinico Universitario A. Gemelli Università Cattolica del Sacro Cuore

Gemelli

- Claudio Chiastra
 - Cristina Aurigemma
 - Francesco Burzotta

H2020 Marie Skłodowska-461 Curie European Training Network H2020-MSCA-ITN-2014 VPH-CaSE, www.vph-case.eu

Thank you for your attention!

EBC FORECAST flow-chart

Application to in vivo cases: Patient 2

- Distal right coronary artery
- 3.5x24 mm Nobori (Terumo) + post-dilation

Angiographic views for centerline extraction

Pie Medical CAAS

Application to in vivo cases: Patient 2

- Distal right coronary artery
- 3.5x24 mm Nobori (Terumo) + post-dilation

