15 slides from OCT session

FRANCESCO BURZOTTA
Institute of Cardiology,
Catholic University of the Sacred Heart,
Rome

r OCT enters the online 3D era

Fast and automatic 3D reconstruction of both vessel wall and stentr struts

Terumo OFDI 3D software St Jude OPTIS ${ }^{\text {TM }}$ Metallic Stent optimization Software

Side Branch Rewiring

New 3D OFDI for the Bifurcation intervention

Takayuki Okamura, MD, Tatsuhiro Fujimura, MD
Yamaguchi University
Ube, Japan

r_{Bra}
 New algorithm of detecting stent strut

Current version

New version

XIII European Bifurcation Club meeting - Porto, Portugal - 13th \& 14th October 2017

Feasibility of the current version of 3D OFDI

 for assessing jailing configuration and recrossing positionwas investigated in consecutive patients who underwent bifurcation stenting under OFDI guidance in our hospital.

Assessment of jailing configuration

Definition

Link (-)

Assessment of rewiring position

Definition

proximal

In-phase type

Out-of-phase type

N=47	CV	NV	Off-line
Distal	$41(87.2)$	$38(80.9)$	$40(85.1)$

Non-distal $4(8.5) \quad 8(17.0) \quad 5(10.6)$

Not

Not	2(4.3)	$1(2.1)$	$2(4.3)$
assessable			

\square distal cell

Agreement with off-line 3D

Side Branch Rewiring

Japanese 3D-OCT bifurcation registry Feasibility of 3D-OCT guided bifurcation stenting and its clinical outcome

Takayuki Okamura, Ryoji Nagoshi, Tatsuhiro Fujimura, Yoshinobu Murasato, Masahiro Yamawaki,Shiro Ono, Takeshi Serikawa, Yutaka Hikichi, Hiroaki Norita, Fumiaki Nakao, Tomohiro Sakamoto, Toshiro Shinke,

Junya Shite,

Method

Kissing ballooning to main vessel and side branch
OCT : final assessment for main vessel

Clinical and Angio follow-up at 9 month

Classification of jailing configuration

"Link-free type"

GW recross distal cell
After kissing ballooning

Optimal

Classification of jailing configuration

"Link-connecting to carina type"

GW recross distal cell
$\rightarrow \quad$ After Kissing Ballooning

GW recross proximal cell

Suboptimal

3D-guide vs 2D-guide

	3D-guide $(\mathbf{n}=\mathbf{5 5})$	2D-guide $(\mathbf{n}=\mathbf{5 0})$	\mathbf{P} value
Distal recrossing	$50 / 55(91 \%)$	$37 / 50(74 \%)$	0.0362
Average recross times (min-max times)	1.55 ± 0.69 $(1-3)$	1.08 ± 0.34 $(1-3)$	<0.001
≥ 2 recross	$24 / 55(44 \%)$	$3 / 50(6 \%)$	<0.001
Total PCI contrast volume	$146 \pm 46 \mathrm{ml}$	$171 \pm 55 \mathrm{ml}$	0.0130
Radiation time	$36.7 \pm 16.8 \mathrm{~min}$	$31.2 \pm 15.8 \mathrm{~min}$	0.0911

Frequency of jailing configuration and rewiring position

Incidence of jailed struts at SB ostium according to stent link

 and rewiring position

Angiographic ISR at 9 Month

Optimal
 Suboptimal
 P value

n	48	39	
ISR	$4(8 \%)$	$8(21 \%)$	0.1254
PMV	$0(0)$	$0(0)$	-
DMV	$1(2.1)$	$0(0)$	1.0000
SB	$4(8 \%)$	$8(21 \%)$	0.1254

Side Branch Compromise

Imaging Session: OCT and New IVUS

Predictors of Side Branch Compomise in OCT Observations

Shiro Uemura, MD, PhD

Cardiovascular Medicine
Kawasaki Medical School, Japan

Planimetric Parameters of Bifurcation Lesion based on Longitudinal OCT Image

SB angle : side branch angle

CT angle : carina tip angle

BP-CT length : length between proximal branching-point (BP) to carina tip (CT)

Plaque Distrubution at Carina Tip Level

Theoretical
 Plaque Distribution

Plaque on opposite side to SB
Type 1

Thin carina without plaque (susceptible to carina shift)

Concentric plaque

Type 2

Eccentric plaque

Type 2

Eccentric plaque

Type 2

OCT Predictors of SB Compromise

$$
\text { HR } \quad 95 \% \text { Cl } \quad p \text { Value }
$$

Lumen area at proximal BP	0.96	$0.66-1.38$	0.81
Theoretical plaque distribution at carina tip	8.53	$1.21-59.9$	<0.05
CT angle ($\left.\leqq 51^{\circ}\right)$	10.5	$1.17-94.4$	<0.05
BP-CT length ($\leqq 1.75 \mathrm{~mm})$	19.2	$2.27-162$	<0.01

Watanabe, Uemura, et al. Coron Artery Dis. 2014;:321-9.

Neointimal coverage of jailed side branches in coronary bifurcation lesions: an optical coherence tomography analysis
 Teruyoshi Kume, Ryotaro Yamada, Koyama Terumasa, Tomoko Tamada, Koichiro Imai, Kenzo Fukuhara, Yutaka Goryo, Ai Kawamura, Okamoto Hiroshi, Yoji Neishi and Shiro Uemura

Coron Artery Dis. 2017 doi: 10.1097/MCA. 0000000000000563.

Background

In addition to risk of late stent thromobosis, overhanging struts within SB ostium may be the risk of SB flow disturbance during long-term follow-up, by means of late tissue growth (neointimal proliferation or fibrin deposition) around struts.

Purpose

To characterize the relationship between the jailing strut pattern within the SB ostium and the tissue coverage of the jailed SB ostium at the chronic phase.

Serial Tissue Growth at SB Ostium

Baseline
 18-month F/U

No-link group

SB ostial area $1.17 \mathrm{~mm}^{2}$

Kume T, Uemura S, et al. Coron Artery Dis. 2017 doi: 10.1097/MCA. 0000000000000563

OCT Analysis

	Link group $(n=11)$	No-link group $(n=18)$	p value
Baseline			
Total number (dots) of struts within SB ostium	8.9 ± 2.5	4.6 ± 2.4	<0.001
SB ostial area (mm^{2})	1.59 ± 0.71	1.07 ± 0.46	0.025
18-month Follow-up	30.0 ± 12.6	29.8 ± 12.6	0.973
SB ostial area free from neointima (mm $\left.{ }^{2}\right)$	1.13 ± 0.58	0.98 ± 0.54	0.485
SB ostial obstruction by neointima (\%)	26.8 ± 21.9	9.5 ± 22.1	0.049

Overhanging strut with link is a risk for neointimal overgrowth at SB ostium(>18 months).

Late loss of SB ostial area (mm^{2})
$0.46 \pm 0.35 \quad 0.09 \pm 0.24 \quad 0.002$

Calcific bifurcations

OCT guided Rotablation
in bifurcation lesions

Caress Sapporo
Hokko Memorial Hospital
Yoichi Nozaki, MD

How to decide burr size for napkin ring lesions under OCT guidance in our center.

(1) Napkin ring \rightarrow aggressive ablation
(2) Min. Ca thick $=760$ um ($>200 \mathrm{um}$)
(3) Wire bias \rightarrow Counter side of Min.

Ca site (mainly ablated)
(4) Lumen diameter $=1.5 \mathrm{~mm}$
(5) Max. burr diameter $=2.0 \mathrm{~mm}$
(6) Virtual circle of Rota burr to achieve minimum thickness (=500 um, considering wire bias.
Burr size $>2 \mathrm{~mm}$ is needed at least.

Pre- procedure OCT

Post- rotablator OCT

a．favorable GW bias

b．unfavorable GW bias

図28 favorable GW biasとunfavorable GW biasの状態

From textbook Rotablator Illustrated by Kazuo Misumi

Thank you for all these data !!!

