

15 slides from OCT session

FRANCESCO BURZOTTA

Institute of Cardiology,

Catholic University of the Sacred Heart,

Rome

\mathcal{O}_{BC} OCT enters the online 3D era

Fast and automatic 3D reconstruction of both vessel wall and stentr struts

Terumo OFDI 3D software

St Jude OPTIS™ Metallic Stent optimization Software

Side Branch Rewiring

New 3D OFDI for the Bifurcation intervention

Takayuki Okamura, MD, <u>Tatsuhiro</u> Fujimura, MD Yamaguchi University Ube, Japan

New algorithm of detecting stent strut

Current version

New version

Feasibility of the current version of 3D OFDI for assessing jailing configuration and recrossing position

was investigated in consecutive patients who underwent bifurcation stenting under OFDI guidance in our hospital.

Assessment of jailing configuration

Definition

Link (-)	Link (+)				
$\Delta \Delta /$	distal	N=47	CV	NV	Off-line
	Carina	Link(-)	32(68.1)	26(55.3)	27(57.4)
	proximal	Link(+)	12(25.5)	20(42.6)	18(38.3)
		Not assessable	3(6.4)	1(2.1)	2(4.3)
"Link-Free	"Link-				

"Link-Free carina" type

"Link-Connecting to carina" type

Assessment of rewiring position

Definition

distal

In-phase type Out-of-phase type

N=47	CV	NV	Off-line
Distal	41(87.2)	38(80.9)	40(85.1)
Non-distal	4(8.5)	8(17.0)	5(10.6)
Not assessable	2(4.3)	1(2.1)	2(4.3)

Agreement with off-line 3D

	Agree with off-line 3D	Disagree with off-line 3D	Ratio of agreement	Р
Current version 3D-OFDI	36	11	76.5%	0.040
New version 3D–OFDI	43	4	91.4%	0.048

統計は*x* 2検定)

Side Branch Rewiring

Japanese 3D-OCT bifurcation registry Feasibility of 3D-OCT guided bifurcation stenting and its clinical outcome

Takayuki Okamura, Ryoji Nagoshi, Tatsuhiro Fujimura, Yoshinobu Murasato, Masahiro Yamawaki, Shiro Ono, Takeshi Serikawa, Yutaka Hikichi, Hiroaki Norita, Fumiaki Nakao, Tomohiro Sakamoto, Toshiro Shinke,

Junya Shite,

Method

investigators

Classification of jailing configuration

"Link-free type"

GW recross distal cell

After kissing ballooning

Classification of jailing configuration

"Link-connecting to carina type"

GW recross distal cell

After Kissing Ballooning

GW recross proximal cell

3D-guide vs 2D-guide

	3D-guide (n = 55)	2D-guide (n = 50)	P value
Distal recrossing	50/55 (91%)	37/50 (74%)	0.0362
Average recross times (min-max times)	1.55±0.69 (1-3)	1.08±0.34 (1-3)	<0.001
≥2 recross	24/55 (44%)	3/50 (6%)	<0.001
Total PCI contrast volume	146±46ml	171±55ml	0.0130
Radiation time	$36.7 \pm 16.8 min$	31.2±15.8min	0.0911

Frequency of jailing configuration and rewiring position

Incidence of jailed struts at SB ostium according to stent link and rewiring position

Angiographic ISR at 9 Month

	Optimal	Suboptimal	P value
n	48	39	
ISR	4(8%)	8(21%)	0.1254
PMV	0(0)	0(0)	-
DMV	1(2.1)	0(0)	1.0000
SB	4(8%)	8(21%)	0.1254

Side Branch Compromise

Imaging Session: OCT and New IVUS

Predictors of Side Branch Compomise in OCT Observations

Shiro Uemura, MD, PhD

Cardiovascular Medicine Kawasaki Medical School, Japan

Planimetric Parameters of Bifurcation Lesion based on Longitudinal OCT Image

SB angle : side branch angle

CT angle : carina tip angle

BP-CT length : length between proximal branching-point (BP) to carina tip (CT)

Plaque Distrubution at Carina Tip Level

OCT Predictors of SB Compromise

	HR	95% CI	p Value
Lumen area			
at proximal BP	0.96	0.66-1.38	0.81
Theoretical plaque distribution			
at carina tip	8.53	1.21-59.9	<0.05
CT angle (\leq 51°)	10.5	1.17-94.4	<0.05
BP-CT length (\leq 1.75 mm)	19.2	2.27-162	<0.01

Watanabe, Uemura, et al. Coron Artery Dis. 2014;:321-9.

Neointimal coverage of jailed side branches in coronary bifurcation lesions: an optical coherence tomography analysis

Teruyoshi Kume, Ryotaro Yamada, Koyama Terumasa, Tomoko Tamada, Koichiro Imai, Kenzo Fukuhara, Yutaka Goryo, Ai Kawamura, Okamoto Hiroshi, Yoji Neishi and Shiro Uemura

Coron Artery Dis. 2017 doi: 10.1097/MCA.00000000000563.

Background

In addition to risk of late stent thromobosis, overhanging struts within SB ostium may be the risk of SB flow disturbance during long-term follow-up, by means of late tissue growth (neointimal proliferation or fibrin deposition) around struts.

Purpose

To characterize the relationship between the jailing strut pattern within the SB ostium and the tissue coverage of the jailed SB ostium at the chronic phase.

Serial Tissue Growth at SB Ostium

Baseline

18-month F/U

Kume T, Uemura S, et al. Coron Artery Dis. 2017 doi: 10.1097/MCA.000000000000563

OCT Analysis				
	Link group	No-link group	p value	
	(n=11)	(n=18)		
Baseline				
Total number (dots) of struts within SB ostiun	n 8.9±2.5	4.6±2.4	<0.001	
SB ostial area (mm²)	1.59±0.71	1.07±0.46	0.025	
18-month Follow-up	30.0±12.6	29.8±12.6	0.973	
SB ostial area free from neointima (mm²)	1.13±0.58	0.98±0.54	0.485	
SB ostial obstruction by neointima (%)	26.8±21.9	9.5±22.1	0.049	
Overhanging strut with link is a risk for neointim	al overgrowth a	at SB ostium(>1	.8 months	
Late loss of SB ostial area (mm ²)	0.46±0.35	0.09±0.24	0.002	
Values are mean \pm SD or n (%). SB: side branch.	Kume T, Uemura S, et al. Coron Artery Dis. 2017 doi: 10.1097/MCA.00000000000056			

Calcific bifurcations

Saiseikai Yokohama City Eastern Hospital, Yokohama, Japan

OCT guided Rotablation in bifurcation lesions

Caress Sapporo Hokko Memorial Hospital Yoichi Nozaki, MD

How to decide burr size for napkin ring lesions under OCT guidance in our center.

(1) Napkin ring \rightarrow aggressive ablation (2) Min. Ca thick = 760 um (>200 um) (3) Wire bias \rightarrow Counter side of Min. Ca site (mainly ablated) (4) Lumen diameter = 1.5 mm (5) Max. burr diameter = 2.0mm (6) Virtual circle of Rota burr to achieve minimum thickness (=500 um, considering wire bias. Burr size > 2mm is needed at least.

Pre-procedure OCT

Post- rotablator OCT

EBC

