

In a planned 2 stent procedure , bifurcation lesion anatomy should determine the sequence of stent insertion

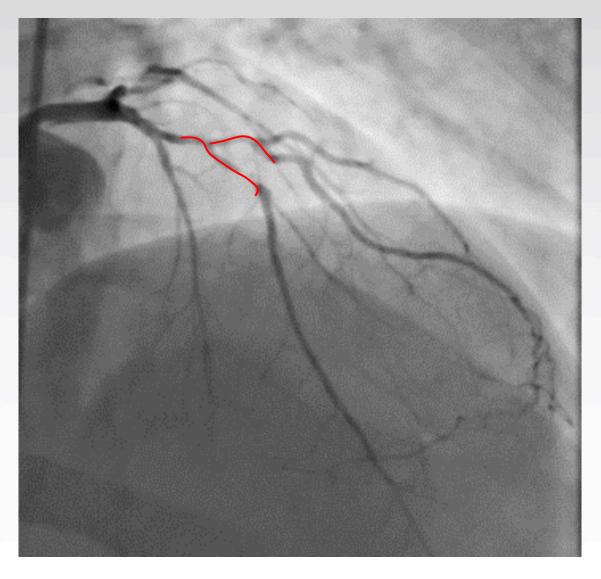
I. Sheiban

Director Imterventional Cardiology Pederzoli Hospital Peschiera D/G (VERONA) / Italy

E-mail: isheiban@gmail.com

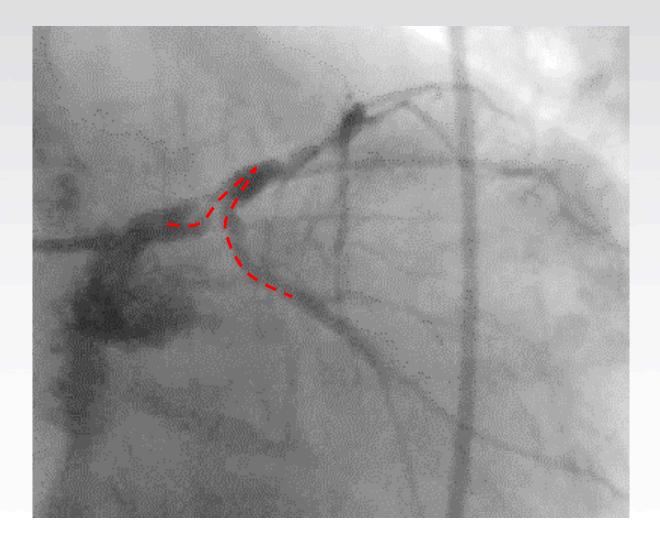
XIII European Bifurcation Club meeting - Porto, Portugal - 13th & 14th October 2017

2 stent strategy in BL depends on SB :

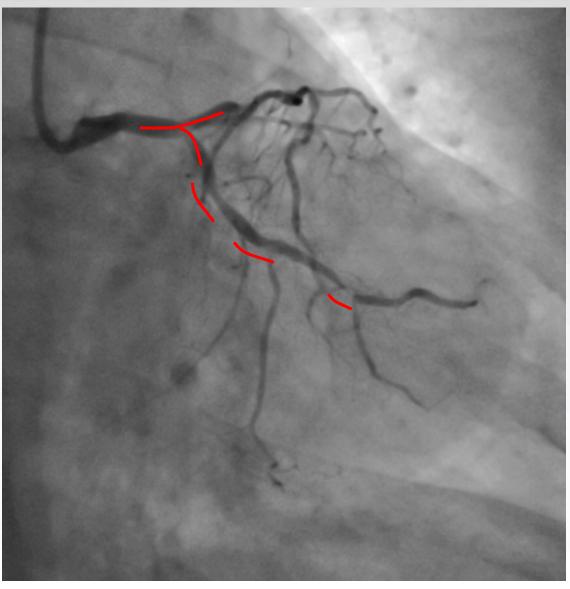

- Size and distribution (and Clinical Rilevance)
- Lesion severity and length
- Disease extension
- Angle
- Calcification ?

The sequence of stenting is not clearly defined

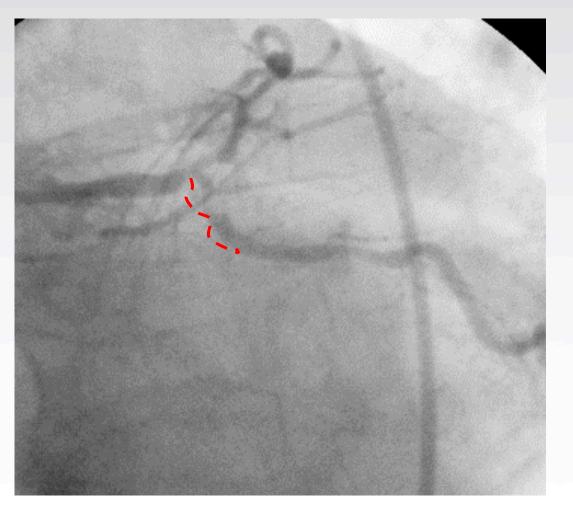
Operator experience in practising a particular optimized doublestenting technique is probably more relevant than the specific technique selection and stent insertion (MV o SB first).



SB with complex lesion



Severe calcifications and challenging access to SB



Diffuse disease on SB

SB with predictable Dissection following predilatation

EuroIntervention 2014;10:545-560

2014

Percutaneous coronary intervention for coronary bifurcation disease: consensus from the first 10 years of the European Bifurcation Club meetings

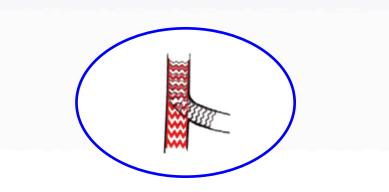
Jens Flensted Lassen^{1*} MD, PhD; Niels Ramsing Holm¹, MD; Goran Stankovic², MD, PhD; Thierry Lefèvre³, MD; Alaide Chieffo⁴, MD; David Hildick-Smith⁵, MD; Manuel Pan⁶, MD; Olivier Darremont⁷, MD; Remo Albiero⁸, MD; Miroslaw Ferenc⁹, MD; Yves Louvard³, MD

EBC consensus:

- Operator experience may be important when choosing a twostent technique.
- Two-stent techniques with deployment of the MV stent first are recommended.
- SB first two-stent techniques may be considered when the SB has particularly difficult access, dissections after predilatation or downstream stenoses to be stented.
- Final kissing balloon dilatation is mandatory in any two-stent technique.

EBC

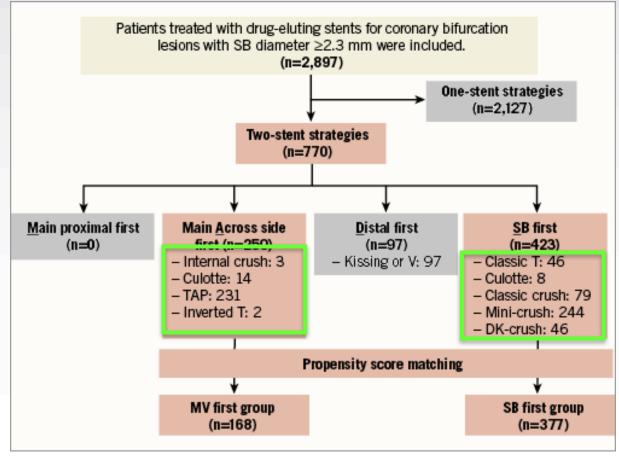
CLINICAL RESEARCH


2016

Percutaneous coronary intervention for coronary bifurcation disease: 11th consensus document from the European Bifurcation Club

Jens Flensted Lassen^{1*}, MD, PhD; Niels Ramsing Holm², MD; Adrian Banning³, MD, PhD; Francesco Burzotta⁴, MD, PhD; Thierry Lefèvre⁵, MD; Alaide Chieffo⁶, MD; David Hildick-Smith⁷, MD; Yves Louvard⁵, MD; Goran Stankovic⁸, MD, PhD

Culotte is a long-lasting technique whose efficacy has been documented in trials (NORDIC I, II, IV and BBC ONE) but has been questioned for distal LM bifurcation treatment¹⁵. Culotte may be practised in both intentional double-stenting procedures and in provisional procedures requiring SB stenting as a bail-out. In the case of intended double stenting, the first stent is usually implanted from the distal SB into the MV followed by distal MV rewiring and stent implantation from distal to the proximal MV.


Crush has evolved over time. After its first description by Colombo, a series of improvements was reported. Its clinical performance is now recognised to be highly dependent on technical factors such as the success in ending up with a final kissing inflation. According to the results of recent Chinese trials conducted by highly experienced crush-dedicated operators, excellent clinical performance for the so-called DK crush technique was reported¹⁶. Expert operators agree that a "modern" way to perform crush is based on the following combination of technical refinements: 1) limiting the length of the cruck distribution segment (mini-crush) during stent implantation an MV balloon (instead of directly in the SB stent (step-crush), and 3) t lloon inflation after stent crush ver of stent struts from the SB orif on the carina side (securing wire re-crossi thus increasing the rate and success of final kissing inflation (DK crush).

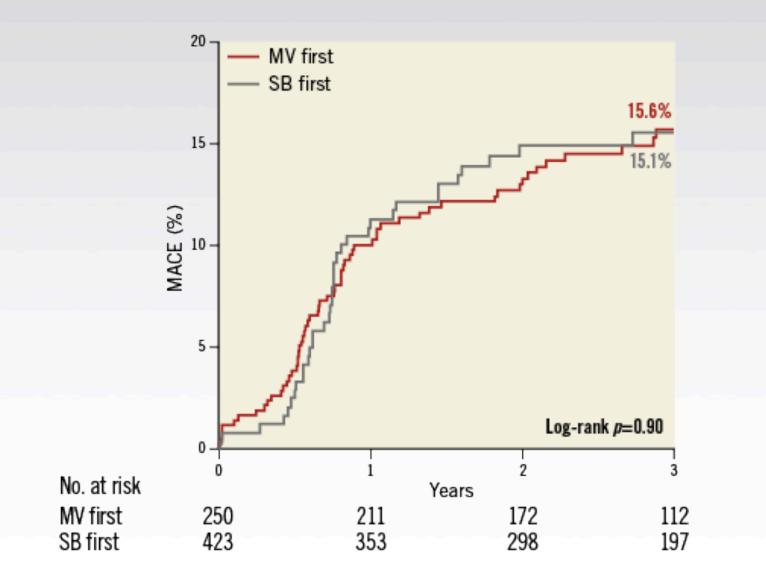
EuroIntervention

Two-stent techniques for coronary bifurcation lesions (main vessel first versus side branch first): results from the COBIS (COronary Blfurcation Stenting) II registry

TK Park et al :; EuroIntervention 2017;13:835-842 published online May 2017

XII European Bifurcation Club meeting - Rotterdam, Netherlands - 14th & 15th October 2016

VEBC


Subgroup	Patients	TL SB first	R (%) MV first	Favours SB first	Favours MV first	Hazard ratio (95% CI)	<i>p</i> -value	<i>p</i> for interaction
MV RD								0.52
≥3.25 mm	217	12/120 (10.0)	12/97 (12.4)			0.80 (0.36-1.78)	0.59	0.02
<3.25 mm	456	40/303 (13.2)	19/153 (12.4)			1.09 (0.63-1.88)	0.77	
SB RD								0.54
≥2.5 mm	276	20/151 (13.2)	19/125 (15.2)		—	0.92 (0.49-1.72)	0.79	
<2.5 mm	397	32/272 (11.8)	12/125 (9.6)			1.23 (0.63-2.38)	0.55	
SB RD>MV RD					-			0.78
Yes	51	5/29 (17.2)	4/22 (18.2)	_		0.84 (0.23-3.12)	0.79	
No	622	47/394 (11.9)	27/228 (11.8)		H	1.04 (0.65-1.67)	0.88	
MV DS				T				0.04
≥70%	257	22/156 (14.1)	8/101 (7.9)	H		1.94 (0.86-4.36)	0.11	
<70%	416	30/267 (11.2)	23/149 (15.4)			0.71 (0.41-1.22)	0.22	
SB DS								0.27
≥70%	200	12/150 (8.0)	6/50 (12.0)		_	0.65 (0.24-1.73)	0.39	
<70%	472	40/273 (14.7)	25/199 (12.6)			1.20 (0.73-1.98)	0.47	
SB DS>MV DS					-			0.008
Yes	252	17/189 (9.0)	12/63 (19.0)			0.44 (0.21-0.92)	0.03	
No	420	35/234 (15.0)	19/186 (10.2)		-	1.54 (0.88-2.68)	0.13	
MV lesion length					_			0.01
≥18 mm	329	36/215 (16.7)	11/114 (9.7)			1.79 (0.91-3.53)	0.09	
<18 mm	344	16/208 (7.7)	20/136 (14.7)			0.53 (0.27-1.01)	0.05	
SB lesion length				_				0.15
≥7.5 mm	354	33/247 (13.4)	10/107 (9.4)			1.47 (0.72-2.98)	0.29	
<7.5 mm	319	19/176 (10.8)	21/143 (14.7)		-	0.73 (0.39-1.36)	0.32	
Bifurcation angle				_				0.10
≥65°	293	27/167 (16.2)	14/126 (11.1)		-	1.53 (0.80-2.92)	0.20	
<65°	380	25/256 (9.8)	17/124 (13.7)			0.72 (0.39-1.33)	0.29	
				_				
			(0.1 1	1	0		

TK Park et al :; EuroIntervention 2017;13:835-842 published online May 2017

XII European Bifurcation Club meeting - Rotterdam, Netherlands - 14th & 15th October 2016

Anatomical characteristics

xII EuroPierParktet 810: methon Parktet 810: methon Parkter 810: method Parkter 810: m

SB occlusion during the procedure

Table 3. Procedural outcomes and in-hospital events in the total and propensity score-matched populations.

		Total population			Propensity score-matched population			
		SB first (n=423)	MV first (n=250)	<i>p</i> -value	SB first (n=377)	MV first (n=168)	<i>p</i> -value	
MV occlusion during procedure ^a		13 (3.1)	10 (4.0)	0.68	12 (3.2)	8 (4.8)	0.63	
SB occlusion during procedure ^a		16 (3.8)	30 (12.0)	<0.001	11 (2.9)	21 (12.5)	<0.001	
Angiographic success ^b	MV	421 (99.5)	249 (99.6)	>0.99	375 (99.5)	167 (99.4)	0.86	
	SB	418 (98.8)	246 (98.4)	0.73	373 (98.9)	164 (97.6)	0.31	
In-hospital events⁰	Death	2 (0.5)	1 (0.4)	>0.99	2 (0.5)	1 (0.6)	0.82	
	ST-elevation myocardial infarction	2 (0.5)	2 (0.8)	>0.63	2 (0.5)	2 (1.2)	0.32	
	Bypass graft surgery	1 (0.2)	0 (0)	>0.99	1 (0.3)	0 (0.0)	0.51	
Procedural success ^d		413 (97.6)	245 (98.0)	0.97	368 (97.6)	163 (97.0)	0.76	

Values are expressed as n (%). ^a Defined as TIMI flow grade <3 during or after procedure, respectively. ^b Defined as TIMI 3 flow and <30% residual stenosis. ^c Included death, ST-elevation myocardial infarction, or emergent bypass graft surgery. ^d Defined as the achievement of angiographic success in the absence of any in-hospital complications. MV: main vessel; SB: side branch; TIMI: Thrombolysis In Myocardial Infarction

TK Park et al :; EuroIntervention 2017;13:835-842 published online May 2017

Stent thrombosis

Hazard ratio (95% CI) SB first MV first p-value Total population n=423 n = 250MACE 64 (15.1) 39 (15.6) 0.97 (0.65-1.45) 0.90 Cardiac death 8 (1.9) 5 (2.0) 0.95 (0.31-2.91) 0.93 Myocardial infarction 11 (2.6) 6 (2.4) 0.88 1.08 (0.40-2.92) Target lesion revascularisation 52 (12.3) 31 (12.4) 1.01 (0.65-1.57) 0.98 Main vessel 45 (10.6) 25 (10.0) 1.08 (0.66-1.77) 0.75 Side branch 1.09 (0.64-1.85) 0.76 38 (9.0) 21 (8.4) Bifurcation 47 (11.1) 1.13 (0.70-1.84) 0.62 25 (10.0) Stent thrombosis, definite or probable 8 (1.9) 5 (2.0) 0.93 (0.30-2.84) 0.90 Propensity score-matched population n=377 n=168 MACE 54 (14.3) 28 (16.7) 0.91 (0.59-1.41) 0.67 Cardiac death 5(1.3) 5 (3.0) 0.61 (0.16-2.31) 0.47 Myocardial infarction 10 (2.7) 6 (3.6) 0.94 (0.32-2.71) 0.91 Target lesion revascularisation 45 (11.9) 20 (11.9) 0.98 (0.56-1.70) 0.93 0.74 (0.41-1.31) Main vessel 38 (10.1) 19 (11.3) 0.30 35 (9.3) 13 (7.7) 1.26 (0.66-2.39) Side branch 0.49 40 (10.6) Bifurcation 17 (10.1) 1.08 (0.60-1.93) 0.80 Stent thrombosis, definite or probable 6 (1.6) 5 (3.0) 0.52 (0.14-1.92) 0.33 Values are expressed as n (%). CI: confidence interval; MACE: major adverse cardiac events; MV: main vessel; SB: side branch

Table 4. Long-term clinical outcomes in the total and propensity score-matched populations.

TK Park et al :; EuroIntervention 2017;13:835-842 published online May 2017

To Summerise for Discussion :

In several BL subsets stenting SB first :

- Provides a predictable result and secure access to SB
- Avoides difficult re-crossing with stent through the MV stent struts (partricularly with long stents) in patients with complex or diffuse SB disease
- Avoids bulcky protrusion of SB stent in MV
- Stenting MV first cannot guarantee a good apposition of the protruding, crushed or overlapped segments in MV stent (reverse crush or minicrush, internal culotte, TAP)

