BVS Bench esting

MOTREFF Pascal ${ }^{1}$, DARREMONT Olivier ${ }^{2}$, LEYMARIE Jean-Louis ${ }^{2}$, LEFEVRE Thierry ${ }^{3}$, SOUTEYRAND Géraud ${ }^{1}$, COMBARET Nicolas ${ }^{1}$, LAMER Maxime ${ }^{4}$, PILET Paul ${ }^{4}$, GUERIN Patrice ${ }^{4}$

1. University Hospital, Clermont-Ferrand, FRANCE
2. Clinique Saint-Augustin, Bordeaux, FRANCE
3. ICPS, Massy, FRANCE
4. University Hospital, Nantes, FRANCE

BVS and Bifurcation

Background

- Absorb ${ }^{\circledR}$ BVS has been clinically evaluated in simple lesions

- Bifurcation management with BVS remains challenging...
- We need Bench Study !

BVS and Bifurcation

Background

- Bioresorbable Vascular Scaffold Features :
- Radiolucent, mechanical performance of Polymer
- BVS behaviour and result in bifurcation remain unknown
- Clinical impact of malapposition, struts fractures, side-branch obstruction...?

BVS Bench Bifurcation study
 Based on our experience of Bench 2013
 \& publication of John Ormiston (Eurointervention 2014)

«POT \& Kiss »
 Absorb $^{\circledR}: 3.5 \times 28 \mathrm{~mm}$ (14 atm)
 POT: NC Balloon 4.0 mm (20 atm)
 Kissing : NC Balloon 3.0 mm \& 2.5 mm

 EBC 2013, London
 O. Darremont

BVS and Bifurcation

Absorb everolimus-eluting bioresorbable scaffolds in coronary bifurcations: a bench study of deployment, side branch dilatation and post-dilatation strategies

John A. Ormiston ${ }^{1,2 / 2 ⿻}$, MBChB; Bruce Webber ${ }^{1}$, MHSe; Ben Ubod ${ }^{1}$, BSN; Mark W.I. Webster ${ }^{123}$, MBChB; Jonathon White ${ }^{2}$, MBChB

- Low inflation pressure
- Small Non Compliant Balloon on the side branch
- Mini Kissing : Snuggle

BVS and Bifurcation

Method : Bench

- BVS deployment in aqueous bath at 37°
- Dedicated Translucent silicone phantoms
- Geometric Fractal Law (Finet)

BVS and Bifurcation

Bench A (LAD/Diagonal)

Bench B (Left Main)

Diameters (mm) \& inflation pressure									10 atm	12 atm	12 atm	$5+5 \mathrm{~atm}$
Bench	Prox MB	Dist MB	SB	BVS	POT	Side	Kiss					
LAD/Diag	3.5	3.0	2.5	$\mathbf{3 . 0} \times \mathbf{2 8}$	3.5	2.5	$3.0+2.5$					
Left Main	4.2	3.5	3.0	$\mathbf{3 . 5} \times \mathbf{2 8}$	4.0	2.5	$3.5+2.5$					

BVS and Bifurcation

Method : Stenting

- Slow BVS deployment, different strategies

		One Stent
Strategy 1 : BVS + POT + Side Opening + Final POT =	PSP	
Strategy 2 : BVS + POT + Snuggle Kissing + Final POT =	PKP	
		Two Stents
Strategy 3 : BVS + POT + Snuggle Kissing + T stenting =	PKP+T	
Strategy 4 : BVS side + BVS main + POT + Snuggle Kissing =	MiniCr	
Strategy 5 : BVS side + BVS Main + Snuggle Kissing + POT =	Culotte	

BVS and Bifurcation

Method : Stenting

16 Bifurcations Strategies

- Example of PKP in Bench A

POT

BVS 3.0x28mm 10 atm

NCB 3.5mm
12 atm

Snuggle Kissing

NCB 2.5 mm \& 3.0mm
5 atm

Final POT

NCB 3.5mm 12 atm

BVS and Bifurcation

OCT assessment

OFDI, Lunawave TERUMO® System Pullback speed $=10 \mathrm{~mm} / \mathrm{s}$

OCT criterias : area and diameter measurements of lumen and BVS, stent deployment, stent apposition, struts fractures....

Micro-CT assessment

3D rendering, qualitative assessment

BVS and Bifurcation

Results : Distal Segment

- Final results : excellent
- Perfect apposition
- No stent distortion
- No strut fracture

	Bench A		Bench B		
PSP					
PKP					
PKP+T					
Crush					
Culotte					

BVS and Bifurcation

Results : Proximal Segment

- Final results : excellent
- No stent distortion
- No strut fracture
- POT is safe \& mandatory

	Bench A		Bench B		
PSP					
PKP					
PKP+T					
Crush					
Culotte					

BVS and Bifurcation

Results: Bifurcation Segment

« Heterogeneous Results »

- Apposition
- Side Opening
- Protrusion
- Lumen Obstruction
- Strut Fracture

		Bench A			Bench B		
One stent	PSP	1	2	1	2		
	PKP	1	2	1	2	3	
	PKP+T	1		1			
Two stents	Crush	1	2	1	2		
	Culotte	1					

- Simplest strategy
- Soft strategy : no fracture (small NCB \varnothing : 2.5 mm , low pressure : 5atm)
- Good result on Main Branch

Excellent correlation Micro-CT/OFDI

OFDI provides BVS assessment Step by Step

- Final POT is mandatory to correct BVS distorsion induced by Side opening

Impact of Final POT on BVS distorsion

- Sub-optimal Side ostium scaffolding

bench defect? inelasticity of BVS ?
low angle ?
Bench B
- Final result very similar to PSP
- Good result on Main branch

PKP (POT, Kissing, final POT)

- Soft distorsion of BVS without fracture
- Sub-optimal Side ostium scaffolding

PKP (POT, Kissing, final POT)

- Final POT is not essential

Culotte or Minicrush

Even if appearances are flattering....

Culotte or Minicrush should be avoided with BVS

- Complex strategy with BVS (recrossing)
- Culotte inapplicable in Left Main Bench
- Bad OCT and Micro-CT results :

Struts fracture, Side branch Obstruction, Protrusion in main branch....

Culotte

Lumen and Side Branch Obstruction

Minicrush

Lumen and Side Branch Obstruction

- If two stents are required, the least worst strategy is...
- Good result especially in Left Main Bench

- If two stents are required, the least worst strategy is...
- Good result especially in Left Main Bench

BVS and Bifurcation

Conclusion

- Stenting Bifurcation with BVS is possible but we must stay cautious
- Bench study is useful to assess the behaviour of BVS in bifurcation
- OCT gives information very similar to these provided by micro-CT :
- Small NCB and low pressure prevent strut fractures
- One Stent rather than Two
- Simplest is better:

POT + Side \& Final POT or POT + Snuggle

BVS Bench Testing Appearances are Sometimes Deceptive

Low angulation
BVS Bench Bifurcation Study

Ormiston JA, Eurointervention 2014

PSP (POT, Side opening, final POT)

PSP (POT, Side opening, final POT)

View from distal SB

